4.7 Article

Yttrium speciation variability in bauxite residues of various origins, ages and storage conditions

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 464, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.132941

Keywords

Karstic; Lateritic; Rare earth elements; Characterization; Mineralogy; XANES; SEM/EDS secondary sources; Critical metals

Ask authors/readers for more resources

This study analyzes the properties of bauxite residue samples and explores the influence of bauxite ore origin, storage conditions, and storage time. The results show that the speciation of yttrium is related to the origin of bauxite ore, while no significant variation was observed with storage conditions or aging of the residues.
Bauxite residues (BRs) are highly alkaline wastes generated during alumina production from bauxite ore. Billions of tons have been accumulating worldwide for more than 100 years, they are stored in various forms, and pose environmental and societal issues. At the same time, BRs are promising secondary sources for the production of critical metals including rare earth elements (REEs). However, knowledge on REE speciation is lacking, and is consequently an obstacle to the development of large-scale extraction process. This study analyses the influence of origin of the bauxite ore (lateritic or karstic), the storage conditions and storage time on the properties of ten BR samples, with a particular focus on the speciation of yttrium, which is used as a proxy to identify the behaviour of heavy REE. A multi-scale approach linked yttrium speciation and the origin of the bauxite ore whereas no major variation was observed as a function of storage conditions or ageing of the BRs. Yttrium is mainly found in the form of xenotime phosphate particles in BRs of lateritic origin, while in karstic BRs, the majority of yttrium is probably adsorbed or incorporated into other minerals including iron oxyhydroxide and hydroxyapatite minerals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available