4.7 Article

Electrocatalytic degradation of nitrogenous heterocycles on confined particle electrodes derived from ZIF-67

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 463, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.132899

Keywords

Particle electrode; Electrocatalysis; Confinement effect; Nitrogenous heterocycles compounds; ZIF-67

Ask authors/readers for more resources

Co/NC/PAC electrode was prepared by compounding ZIF-67 with powder-activated carbon for the electrocatalytic treatment of nitrogen-containing heterocyclic compounds. The degradation efficiency of the four compounds reached 90.2-93.7% under optimal conditions, and the degradation order was pyridazine < pyrimidine < pyrazine < pyridine.
Nitrogen-containing heterocyclic compounds (NHCs) are hazardous, toxic, and persistent pollutants, thereby requiring urgent solutions. Herein, ZIF-67 was compounded with powder-activated carbon (PAC) to prepare Co/NC/PAC (NC i.e. nitrogen-doped carbon) particle electrodes for the electrocatalytic treatment of pyridine and diazines. Co/NC/PAC reflected the confinement of Co3O4/CoN/Co-0 into the N-doped graphitic-carbon layer to generate both pyrrolic-N and graphitic-N active sites. Under the optimal conditions (0.3 A, 12 mL min(-1), and initial pH 7.00), the degradation of four NHCs realized 90.2-93.7% efficiencies. The number and position of N atoms in NHCs directly affected the degradation efficiency. The following increasing order of facilitated degradation was recorded: pyridazine < pyrimidine < pyrazine < pyridine. The as-obtained Co/NC/PAC possessed the direct redox effect on NHCs, achieving fast electrocatalytic rate. Species like OH and H* were detected in Co/NC/PAC system with contributions to NHCs degradation estimated to 24% and 34%, respectively. Density functional theory (DFT) calculations revealed H* susceptible to attacking the N position, while the meta-position of C was subject to hydroxyl radical (OH) addition. Overall, degradation of NHCs was achieved by hydro-reduction, oxidation, ring opening cleavage, hydroxylation, and mineralization. Ring-cleavage and mineralization of NHCs provided a novel electrochemical strategy to refractory wastewater treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available