4.7 Article

Carbon dioxide capture with aqueous calcium carbide residual solution for calcium carbonate synthesis and its use as an epoxy resin filler

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 345, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.118783

Keywords

CO2 capture; Calcium carbide residue; Precipitated calcium carbonate; Filler

Ask authors/readers for more resources

This study examined the synthesis of CaCO3 from CCR solutions by capturing CO2 with the aid of triethanolamine (TEA) solutions. The results showed that TEA solutions primarily produced cubic calcite, while non-TEA solutions formed small and agglomerated spherical vaterite and cubic calcite particles. The CaCO3-filled epoxy composites exhibited higher compressive strength but reduced transparency. These findings provide guidelines for the application of CCR slurry filtrate and suggest the potential of CO2 gas combined with TEA solution for carbon-neutral manufacturing.
Calcium carbide residue (CCR) is a waste obtained from the production of acetylene gas by the hydration reaction of calcium carbide. This residue is generated in large quantities annually and requires appropriate disposal. The main composition of the residue is calcium hydroxide (Ca(OH)2). Ca(OH)2 can react with CO2 gas and form CaCO3 particles. This process is well known but not very attractive since Ca(OH)2 is obtained from limestone using an energy-intensive thermal conversion process. This paper examined the synthesis of CaCO3 from CCR solutions by capturing CO2 with the aid of triethanolamine (TEA) solutions at doses of 0, 5, 10 and 20% w/w. The precipitated CaCO3 was characterized, and the application of CaCO3 as a filler in epoxy resin was tested. The results showed that the precipitated CaCO3 was mainly calcite, with a 76.6% yield. Cubic calcite was primarily obtained in TEA solutions, whereas small and agglomerated spherical vaterite and cubic calcite particles were formed in non-TEA solutions. The CaCO3-filled epoxy composites showed higher compressive strength than the neat resin. However, the transparency of specimen plates was reduced. These results can serve as guidelines for the application of CCR slurry filtrate obtained from the sedimentation ponds of acetylene plants and help to reduce the amount of wastewater that needs to be treated. CO2 gas from industrial flue gas combined with TEA solution could be applied to precipitate CaCO3 for carbon-neutral manufacturing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available