4.3 Article

Development of Physical-Chemical Surrogate Models and Skeletal Mechanisms for the Combustion Simulation of Several Jet Fuels

Publisher

ASME
DOI: 10.1115/1.4063304

Keywords

jet fuel; surrogate fuel; skeletal mechanism; combustion; spray

Ask authors/readers for more resources

This study developed physical-chemical surrogate models for S-8, Jet-A, and RP-3 fuels and verified their accuracy in capturing physical properties and spray characteristics. A high-precision surrogate skeletal mechanism suitable for CFD simulations was also developed and validated. The surrogate models were further used in combustion CFD simulations, showing good agreement with experimental data in fundamental and spray combustion characteristics.
The physical-chemical surrogate models for S-8, Jet-A, and RP-3 fuels to capture their physical and kinetics properties have been developed in this study. n-dodecane (nC12H26), 2,5-dimethylhexane (C8H18-25), and toluene (C6H5CH3) were chosen as candidate surrogate components and formulated by the function group based surrogate fuel methodology. Some important physical properties and spray characteristics for S-8, Jet-A, and RP-3 surrogate models were validated. The results indicate that present surrogate models can well emulate various physical properties to accurately reproduce the spray characteristics. Then, a minimal and high-precision surrogate skeletal mechanism that can be suitable for computational fluid dynamics (CFD) simulations was developed and validated against some fundamental combustion experiments for each surrogate component. Furthermore, the performances of surrogate models that contain the surrogate formulation and associated skeletal mechanisms were validated against the experimental data on ignition delay times (IDTs), species concentration profiles, and laminar flame speeds (Su0) in a wide range of conditions. Finally, the surrogate fuels were used to combustion CFD simulations to model the spray combustion process in a constant volume combustion chamber. It can be seen that the agreements between the simulation and experiment in fundamental and spray combustion characteristics are reasonably good, which proves that present surrogate models are accurate and robust to be applied in CFD simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available