4.7 Article

An embedded strategy for large scale incompressible flow simulations in moving domains

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 488, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2023.112181

Keywords

Embedded methods; Fixed -mesh ALE; Small cut instability; Stabilised finite element methods; Fractional step schemes

Ask authors/readers for more resources

In this work, a methodology called fixed-mesh ALE is used to approximate the incompressible Navier-Stokes equations in time dependent domains. The equations are written in a moving ALE reference system but projected onto a fixed background mesh to handle the motion of the domain. Nitsche's type formulation and stabilisation techniques are applied to deal with badly cut elements and prescribe boundary conditions. The resulting flow formulation is a stabilised finite element method that can handle convection dominated flows and behaves like an implicit large eddy simulation approach.
In this work we describe a methodology to approximate the incompressible Navier-Stokes equations in time dependent domains. To deal with the motion of the domain, we employ a fixed mesh method that we call fixed-mesh ALE. It consists of writing the equations in a moving ALE reference system but then projecting them onto a fixed background mesh. This implies that the boundaries of the elements do not necessarily coincide with the physical boundaries, and thus there is the possibility of badly cut elements. We use a Nitsche's type formulation to prescribe the boundary conditions and stabilise the bad cuts by introducing a term that penalises the gradient of the unknown orthogonal to the finite element space in a patch that contains the badly cut element. The flow formulation is a stabilised finite element method that allows one to treat convection dominated flows and to use equal velocity-pressure interpolation. Furthermore, this formulation can be shown to behave as an implicit large eddy simulation approach. A key issue is that the sub-grid scales on which the formulation depends are allowed to be time dependent; this fact has proved to be crucial for the robustness of the approach. The calculation of the velocity and the pressure is segregated by using a fractional step scheme designed at the pure algebraic level, and the conditioning of the pressure equation is improved by using an artificial compressibility technique. Finally, an adaptive mesh refinement strategy is described. All the algorithms are implemented in a parallel environment. The strategy described can be applied to complex flow problems, and in particular here we show the simulation of the air flow generated by a train moving inside a tunnel.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available