4.7 Article

A high-order residual-based viscosity finite element method for incompressible variable density flow

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 497, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2023.112608

Keywords

Incompressible variable density flow; Residual viscosity; Artificial viscosity; Artificial compressibility; Preconditioning

Ask authors/readers for more resources

In this paper, a high-order accurate finite element method for incompressible variable density flow is introduced. The method addresses the issues of saddle point system and stability problem through Schur complement preconditioning and artificial compressibility approaches, and it is validated to have high-order accuracy for smooth problems and accurately resolve discontinuities.
In this paper, we introduce a high-order accurate finite element method for incompressible variable density flow. The method uses high-order Taylor-Hood velocity-pressure elements in space and backward differentiation formula (BDF) time stepping in time. This way of discretization leads to two main issues: (i) a saddle point system that needs to be solved at each time step; (ii) a stability issue when the viscosity of the flow goes to zero or if the density profile has a discontinuity. We address the first issue by using Schur complement preconditioning and artificial compressibility approaches. We observed similar performance between these two approaches. To address the second issue, we introduce a modified artificial Guermond-Popov viscous flux where the viscosity coefficients are constructed using a newly developed residual-based shock-capturing method. Numerical validations confirm high-order accuracy for smooth problems and accurately resolved discontinuities for problems in 2D and 3D with varying density ratios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available