4.7 Article

MOF-derived bimetallic coordination polymer@cobalt-aluminum layered double hydroxide for highly selective CO2 adsorption: Experiments, mechanisms

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 645, Issue -, Pages 784-793

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2023.05.039

Keywords

Carbon dioxide; Adsorption; Layered double hydroxide; Coordination polymers; Metal-organic framework

Ask authors/readers for more resources

In this study, a novel adsorbent, Co-Al-LDH@Hf/Ti-MCP-AS, was synthesized for selective CO2 adsorption and separation. The maximum CO2 adsorption capacity of Co-Al-LDH@Hf/Ti-MCP-AS was 2.57 mmol g(-1) at 25 degrees C and 0.1 MPa. The adsorption behavior followed the pseudo-second-order kinetics and Freundlich isotherm models, and the adsorption occurred through acid-base interactions between amine functional groups and CO2.
Selective capture of CO2 is one of the most effective strategies for combating the greenhouse effect. In this study, we report the synthesis of a novel adsorbent-an amine-based cobalt-aluminum layered hydroxide with a hafnium/titanium metal coordination polymer (denoted as Co-Al-LDH@Hf/Ti-MCP-AS)-through the derivatization of metal-organic frameworks (MOFs) for selective CO2 adsorption and separation. Co-Al-LDH@Hf/Ti-MCP-AS achieved the maximum CO2 adsorption capacity of 2.57 mmol g(-1) at 25 degrees C and 0.1 MPa. The adsorption behavior followed the pseudo-second-order kinetics and Freundlich isotherm models, indicating that chemisorption occurs on a non-homogeneous surface. Co-Al-LDH@Hf/Ti-MCP-AS also exhibited selective CO2 adsorption in CO2/N-2 and excellent stability over six adsorption-desorption cycles. An in-depth analysis of the adsorption mechanism through X-ray photoelectron spectroscopy and density-functional theory and frontier molecular orbital calculations revealed that adsorption occurs through acid-base interactions between amine functional groups and CO2 and that the tertiary amines (N3) have the highest affinity toward CO2. Our study provides a novel strategy for designing high-performance adsorbents for CO2 adsorption and separation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available