4.7 Article

Multi-layering of carbon conductivity enhancers for boosting rapid recharging performance of high mass loading lithium ion battery electrodes

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 655, Issue -, Pages 518-526

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2023.10.153

Keywords

Multi-layering; Spray coating; Carbon nanotube; Rate capability; Lithium ion battery

Ask authors/readers for more resources

This research developed an effective approach to enhance the charging rates of lithium ion batteries (LIBs) by strategically incorporating carbon nanotube (CNT) conductivity boosters into Li4Ti5O12 (LTO) electrodes. Multi-layer architectures comprising CNT-rich and CNT-free LTO electrode layers were manufactured using a layer-by-layer spray coating method to promote charge transfer kinetics of high mass loading electrodes. The best performing multi-layer was paired with a spray-coated LiFePO4 (LFP) positive electrode, resulting in attractive power performance that outperformed conventional LTO || LFP combinations.
The ability of lithium ion batteries (LIBs) to provide rapid charging characteristics while retaining a substantial energy storage capacity is of paramount significance for their applicability in portable smart electronic devices. In this research, an effective approach to enhance re-charging rates of LIB cells was developed through incorporating carbon nanotube (CNT) conductivity boosters strategically into Li4Ti5O12 (LTO) electrodes. A layer-by -layer spray coating was exploited to manufacture multi-layer architectures that comprise sequential, discrete electrode layers of CNT-rich LTO and CNT-free LTO, aiming at promoting charge transfer kinetics of high mass loading electrodes. Initially, the optimal proportion of a CNT-rich layer and its best location within multi-layer electrode structures were investigated in half-cell configurations. The best performing multi-layer was then paired with a spray-coated LiFePO4 (LFP) positive electrode in full-cell LIBs, offering attractive power performance of similar to 1500 W/kg that outperformed conventional LTO || LFP combinations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available