4.7 Article

Conformer Generation for Structure-Based Drug Design: How Many and How Good?

Ask authors/readers for more resources

This study empirically elucidates the general principles of the size, diversity, and quality of conformational ensembles needed for optimal performance in structure-based drug discovery tasks. It compares the performance of state-of-the-art generative deep learning approach with a classical geometry-based approach and investigates the effects of energy minimization, ensemble size, construction, and their impact on recapitulating bioactive conformations and performing pharmacophore screening and molecular docking.
Conformer generation, the assignment of realistic 3D coordinates to a small molecule, is fundamental to structure-based drug design. Conformational ensembles are required for rigid-body matching algorithms, such as shape-based or pharmacophore approaches, and even methods that treat the ligand flexibly, such as docking, are dependent on the quality of the provided conformations due to not sampling all degrees of freedom (e.g., only sampling torsions). Here, we empirically elucidate some general principles about the size, diversity, and quality of the conformational ensembles needed to get the best performance in common structure-based drug discovery tasks. In many cases, our findings may parallel common knowledge well-known to practitioners of the field. Nonetheless, we feel that it is valuable to quantify these conformational effects while reproducing and expanding upon previous studies. Specifically, we investigate the performance of a state-of-the-art generative deep learning approach versus a more classical geometry-based approach, the effect of energy minimization as a postprocessing step, the effect of ensemble size (maximum number of conformers), and construction (filtering by root-mean-square deviation for diversity) and how these choices influence the ability to recapitulate bioactive conformations and perform pharmacophore screening and molecular docking.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available