4.4 Article

Plant growth promoting Bacillus species elicit defense against Meloidogyne incognita infecting tomato in polyhouse

Journal

JOURNAL OF BASIC MICROBIOLOGY
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1002/jobm.202300146

Keywords

Bacillus cereus; Bacillus megaterium; Bacillus pumilus; Bacillus subtilis; Meloidogyne incognita

Categories

Ask authors/readers for more resources

The effects of four nematicidal rhizobacterial isolates on infection and multiplication of root-knot nematode on tomato were compared with a chemical nematicide. It was found that the bacterial isolates significantly reduced root galling and reproduction factor of the nematode compared to the control. The defense genes and enzymes were also upregulated in the rhizobacteria-treated plants.
The effects of four nematicidal rhizobacterial isolates; Bacillus subtilis, Bacillus pumilus, Bacillus megaterium, and Bacillus cereus on infection and multiplication of root-knot nematode, Meloidogyne incognita on tomato were compared with the application of a chemical nematicide, fluopyram 34.48% SC (Velum Prime). The bio-efficacy trial conducted in pots preinoculated with the above isolates followed by M. incognita inoculation resulted in a significant reduction in percent root galling viz. 91.95 in B. subtilis, 84.21 in B. pumilus, 83.70 in B. megaterium, and 81.8 in B. cereus, at 75 days after inoculation (DAI). The reproduction factor of the nematode was the lowest (15.83) in B. subtilis, followed by B. pumilus (21.00), compared with 48.16 in control, with enhanced photosynthetic and transpiration rates. The mechanism of induced resistance was assessed using quantitative reverse-transcription polymerase chain reaction (qRT-PCR) for quantification of three key defense genes (PR-1b, JERF3, and CAT) at 0,2,4,8 and16 days DAI. The defence genes, PR-1b, JERF3, and CAT were expressed at 2.5-7.5-folds in rhizobacterialtreated plants, but not in nematicide treatment. The defense enzymes viz., super oxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (PO), and phenylalanine ammonia lyase (PAL) when quantified (& mu;mol/mg protein) showed an increase from 1.5 to 17.5 for SOD, 2.1 to 7.8 in PPO, 1.8 to 10.2 in PO, and 1.8 to 8.7 in PAL during 0 to 16 DAI, in rhizobacteria-treated plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available