4.6 Article

Evaluation of Mechanically-Assisted Crevice Corrosion of Different Modular Dual Mobility Constructs

Journal

JOURNAL OF ARTHROPLASTY
Volume 38, Issue 7, Pages S274-S279

Publisher

CHURCHILL LIVINGSTONE INC MEDICAL PUBLISHERS
DOI: 10.1016/j.arth.2023.04.036

Keywords

total hip arthroplasty; mechanically assisted crevice corrosion; modular dual mobility acetabular tapers; taper corrosion; retrieval analysis

Categories

Ask authors/readers for more resources

This study investigated shell-liner corrosion in modular dual mobility (MDM) acetabular components used in total hip arthroplasty. The results showed that liner corrosion was higher in MDM2 compared to MDM1, particularly outside the taper region. The findings suggest that factors related to design and surface finish play a significant role in the corrosion behavior of MDM components.
Background: Modular dual mobility (MDM) acetabular component use is rising in total hip arthroplasty. However, concern of mechanically assisted crevice corrosion (MACC) at the shell-liner interface remains. We investigated shell-liner corrosion using retrieval analyses and corrosion chamber testing. Methods: We analyzed fretting and corrosion on 10 matched pairs of 2 commercial MDM constructs (MDM1 and MDM2). Also, pristine pairs of Ti6Al4V shells and CoCrMo liners from 3 commercial dual mobility systems (MDM1, MDM2, and MDM3) were tested in vitro to model MACC performance. Three pairs of each were placed into an electrochemical chamber with stepwise increasing cyclic compression loads while measuring currents generated at the shell-liner taper. Onset fretting loads and fretting currents were calculated. Results: Corrosion damage scores on retrieved components were low but higher in the MDM2 to MDM1 liners (P = .006), specifically outside the taper region (P = .00003). Fretting currents were higher in the MDM2 than in MDM1 or MDM3 (P = .011). Onset loads were also higher in the MDM2 (P = .001). Conclusion: Among retrieved liners, MDM2 tapers seem prone to non-mechanical corrosion modes. Higher onset loads and fretting currents in MDM2 tapers indicate greater MACC resistance but higher severity once corrosion begins. Differences among the devices were likely due to taper design and surface finish. Currents in all 3 were <5 mu A, much lower than those observed with head-neck tapers. Our findings suggest that, among the types of corrosion observed in these MDM designs, mechanically driven corrosion may not be the most significant. (c) 2023 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available