4.6 Article

Metal contacts and Schottky barrier heights at boron arsenide interfaces: A first-principles study

Journal

JOURNAL OF APPLIED PHYSICS
Volume 134, Issue 11, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0163908

Keywords

-

Ask authors/readers for more resources

The combined feature of high thermal conductivity and high carrier mobility makes cubic boron arsenide (c-BAs) promising for high power and high frequency applications. The interfacial contact effects of BAs (110), (111), and (100) surfaces with various metals have been studied using first-principles calculations. The results provide insights into the properties at metal-BAs contact interfaces and offer a theoretical basis for the selection of suitable electrodes for high power BAs devices.
The combined feature of high thermal conductivity and high carrier mobility makes cubic boron arsenide (c-BAs) promising for high power and high frequency applications. In BAs-based electronics, the interaction between metals and BAs is crucial, as it significantly affects the electronic properties. One particular parameter is the Schottky barrier height (SBH), which plays a critical role in determining the transmission properties. The interfacial contact effects of BAs (110), (111), and (100) surfaces with a variety of metals have been carefully explored using first-principles calculations in order to characterize their electrical characteristics. For p-type SBHs, over different terminations, there is a strong linear trend with increasing metal work function, with a relatively steeper pinning coefficient of similar to 0.2. The results show that the SBHs follow a relation of phi(n)(110) > phi(n)(111) > phi(n)(100). Clear metal induced gap states can be observed at the interfacial BAs, resulting in an enhanced Fermi level pinning effect. The Sc is excellent at generating Schottky contacts with relatively higher SBHs (similar to 0.9 eV). Pt has the smallest barrier height of similar to 0.3 eV, making it ideal for ohmic electrodes with low contact resistance. This work provides insight into the properties at metal-BAs contact interfaces and provides a theoretical basis for the selection of suitable electrodes for high power BAs devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available