4.6 Article

Growth and stability of epitaxial zirconium diboride thin films on silicon (111) substrate

Journal

JOURNAL OF APPLIED PHYSICS
Volume 134, Issue 13, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0160871

Keywords

-

Ask authors/readers for more resources

The epitaxial growth of boron rich hexagonal zirconium diborides (h-ZrB2+delta) thin films on Si(111) substrates using the magnetron co-sputtering technique with elemental zirconium and boron is reported. The effect of process temperature (700-900 degrees C) on the compositions and epitaxy quality was investigated. The experimental results showed that an epitaxial thin film of h-ZrB2+delta can be grown on Si(111) substrate using a magnetron co-sputtering technique at a relatively low processing temperature (700 degrees C) and has the potential to be used as a template for III-nitride growth on Si substrates.
The epitaxial growth of boron rich hexagonal zirconium diborides (h-ZrB2+delta) thin films on Si(111) substrates using the magnetron co-sputtering technique with elemental zirconium and boron is reported. The effect of process temperature (700-900 degrees C) on the compositions and epitaxy quality was investigated. The chemical composition of the films was found to have a higher boron to zirconium ratio than the ideal stoichiometric AlB2-type ZrB2 and was observed to be sensitive to process temperature. Films deposited at 700 degrees C exhibited intense diffraction peaks along the growth direction corresponding to (000l) of h-ZrB2 using both lab and synchrotron-based x-ray diffractograms. The thermal and compositional stability of the epitaxial h-ZrB2+delta film was further evaluated under a nitrogen-rich environment through isothermal annealing which showed a reduction in in-plane misorientation during thermal annealing. The relative stability of deviating compositions and the energetics of impurity incorporations were analyzed using density functional theory simulations, and the formation of native point defects or impurity incorporation in h-ZrB2 was found to be endothermic processes. Our experimental results showed that an epitaxial thin film of h-ZrB2+delta can be grown on Si(111) substrate using a magnetron co-sputtering technique at a relatively low processing temperature (700 degrees C) and has the potential to be used as a template for III-nitride growth on Si substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available