4.4 Article

Reflection dispersion of seismic waves at the ocean bottom due to mesoscopic-flow loss

Journal

JOURNAL OF APPLIED GEOPHYSICS
Volume 215, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jappgeo.2023.105135

Keywords

Reflection dispersion; Ocean bottom; Boundary conditions; Mesoscopic attenuation; Velocity dispersion

Ask authors/readers for more resources

In this study, the seismic reflection dispersion from the ocean bottom separating seawater and heterogeneous porous seabed is investigated, taking into account the multi-scale fluid-flow losses and shear-wave attenuation. The analytical reflection coefficient based on displacement potentials and appropriate boundary conditions is obtained. The study considers two reflection scenarios, the water/water-bearing medium contact and the water/gas-saturated medium interface. Numerical results show the significant influence of P-wave mesoscopic attenuation, complex shear modulus, boundary conditions, and permeability on the frequency and angle dependence of reflection coefficients.
Seismic reflections at the interface of heterogeneous porous media are significantly affected by the multi-scale fluid-flow losses. In this work, we study the seismic reflection dispersion from the ocean bottom separating seawater and heterogeneous porous seabed, described by the effective Biot theory where the mesoscopic loss is present. The analytical reflection coefficient is obtained based on the displacement potentials and suitable boundary conditions. Two reflection scenarios, including the water/water-bearing medium contact and water/ gas-saturated medium interface, are considered. The shear-wave attenuation is also considered by using a Cole-Cole complex shear modulus. Numerical results showing the variation in reflection magnitude versus fre-quency and incidence angle are presented, revealing that the P-wave mesoscopic attenuation, complex shear modulus, boundary conditions and permeability can significantly affect the frequency and angle dependence of the reflection coefficients. Reflections at the water/gas-saturated medium interface exhibit quite different be-haviors from those at the water/water-bearing medium contact. The open-pore interface gives frequency -dependent reflections, whereas in sealed-pore case, the reflection magnitudes remain unchanged for all fre-quencies, due to the fact that the interface degrades into a water/elastic solid one. The study can be relevant for reservoir prediction and fluid identification based on the reflected marine data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available