4.7 Article

The microstructure and high-temperature oxidation resistance of Si-rich Mo-Si-B coatings prepared by ultrasonic vibration assisted laser cladding

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 953, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2023.170175

Keywords

Si-rich Mo -Si -B coating; Laser cladding; Ultrasonic vibration; Microstructure; Oxidation resistance

Ask authors/readers for more resources

Si-rich Mo-Si-B powders were deposited on Nb-Si based alloy using laser cladding assisted with ultrasonic vibration. The coatings exhibited improved microstructure and element distribution due to the cavitation and acoustic streaming effect of the ultrasonic vibration. The coatings also showed enhanced oxidation resistance, with the formation of a protective oxide scale consisting of amorphous aluminoborosilica and crystalline SiO2 layers.
Si-rich Mo-Si-B powders (Mo-62Si-5B at%) were deposited on Nb-Si based alloy by laser cladding assisted with ultrasonic vibration. The obtained coatings mainly consist of MoSi2 and (Mo, X)5Si3 (X = Nb and Ti). With the introduction of ultrasonic vibration during laser cladding, the lath-shaped MoSi2 phase transforms into cellular gradually. Meanwhile, the discrepancy on the microstructure of the top region and the bottom region is eliminated gradually, indicating that the cavitation and acoustic streaming of ultrasonic vibration not only refines the microstructure, but also homogenizes the element and phase distribution in the coatings. High-temperature oxidation experiment at 1250 celcius were conducted to assess the oxidation re-sistance of the coatings. Compared with Nb-Si alloy, the coated specimens have much lower oxidation weight increase. Furthermore, with the assistance of ultrasonic vibration, the oxidation resistance of the coating is enhanced further. The oxide scales on the coatings consist of two layers: an upper amorphous aluminoborosilica with TiO2 particles dispersed and a lower crystalline SiO2 layer. With the introduction of ultrasonic vibration, the microstructure of the coatings is refined, resulting in more phase and grain boundaries in the coatings. Therefore, the diffusion of the elements to the surface is accelerated and the protective oxide scale can be formed quickly. (c) 2023 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available