4.7 Article

The Late Embryogenesis Abundant Proteins in Soybean: Identification, Expression Analysis, and the Roles of GmLEA4_19 in Drought Stress

Journal

Publisher

MDPI
DOI: 10.3390/ijms241914834

Keywords

LEA gene family; soybean; genome-wide identification; evolutionary analysis; abiotic stress; GmLEA4_19; drought tolerance

Ask authors/readers for more resources

In this research, a genome-wide survey was conducted to identify and classify the LEA genes in soybean. The study characterized the GmLEAs by determining their subcellular localization, gene duplication, structure, motif conservation, and tissue expression pattern. The expression profile analysis revealed that certain GmLEAs respond to drought and salt stress. Additionally, the study explored the function of GmLEA4_19 and found that it enhances drought tolerance in Arabidopsis and soybean. These findings contribute to a better understanding of the biological roles of LEA genes in soybean.
Late embryogenesis abundant (LEA) proteins play important roles in regulating plant growth and responses to various abiotic stresses. In this research, a genome-wide survey was conducted to recognize the LEA genes in Glycine max. A total of 74 GmLEA was identified and classified into nine subfamilies based on their conserved domains and the phylogenetic analysis. Subcellular localization, the duplication of genes, gene structure, the conserved motif, and the prediction of cis-regulatory elements and tissue expression pattern were then conducted to characterize GmLEAs. The expression profile analysis indicated that the expression of several GmLEAs was a response to drought and salt stress. The co-expression-based gene network analysis suggested that soybean LEA proteins may exert regulatory effects through the metabolic pathways. We further explored GnLEA4_19 function in Arabidopsis and the results suggests that overexpressed GmLEA4_19 in Arabidopsis increased plant height under mild or serious drought stress. Moreover, the overexpressed GmLEA4_19 soybean also showed a drought tolerance phenotype. These results indicated that GmLEA4_19 plays an important role in the tolerance to drought and will contribute to the development of the soybean transgenic with enhanced drought tolerance and better yield. Taken together, this study provided insight for better understanding the biological roles of LEA genes in soybean.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available