4.7 Article

Preparation and Characterisation of Acid-Base-Change-Sensitive Binary Biopolymer Films with Olive Oil and Ozonated Olive Oil Nano/Microcapsules and Added Hibiscus Extract

Journal

Publisher

MDPI
DOI: 10.3390/ijms241411502

Keywords

hibiscus; nano; microcapsules; alginate; chitosan

Ask authors/readers for more resources

The study aimed to develop and characterize bionanocomposites based on chitosan and alginate, which were functionalized with emulsions containing water, oil, ozonated oil, and hibiscus flower extracts. The structure, morphology, and properties of the materials were analyzed using various techniques. The results showed that the order of adding polysaccharides had a significant impact on encapsulation capacity and thermal stability. The composites containing nano/microcapsules exhibited higher emission intensity and sensitivity to acid/base changes, but a drop in mechanical properties was observed after functionalization.
The purpose of this study was to develop and characterise bionanocomposites based on chitosan (CHIT) and alginate (ALG) in two series, which were subsequently functionalised with emulsions based on a combination of water, oil, ozonated oil and hibiscus flower extracts. The structure and morphology of the materials produced were characterised by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and ultraviolet and visible light (UV-Vis) absorption spectroscopy, along with a surface colour analysis and the determination of the mechanical and thermal properties of the resulting composites. Functionalisation did affect the analysed composite parameters. The FTIR spectra indicated that the polysaccharide matrix components were compatible. The SEM images also confirmed the presence of nano/microcapsules in the polysaccharide matrix. The obtained results indicate that the order of adding polysaccharides has a significant impact on the encapsulation capacity. The encapsulation resulted in the improved thermal stability of the composites. The emissions analysis showed that the composites containing nano/microcapsules are characterised by a higher emission intensity and are sensitive to acid or base changes. Significant differences in emission intensity were observed even at low concentrations of acids and bases. A drop in the mechanical properties was observed following functionalisation. The results of this study suggest that these bionanocomposites can be used as active and/or smart packaging materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available