4.7 Article

Berberine-Encapsulated Poly(lactic-co-glycolic acid)-Hydroxyapatite (PLGA/HA) Microspheres Synergistically Promote Bone Regeneration with DOPA-IGF-1 via the IGF-1R/PI3K/AKT/mTOR Pathway

Journal

Publisher

MDPI
DOI: 10.3390/ijms242015403

Keywords

polymer microspheres; berberine (BBR); IGF-1; bone regeneration; osteogenic differentiation

Ask authors/readers for more resources

Polymer microspheres have shown great potential in bone tissue engineering due to their unique properties. In this study, BBR-encapsulated IGF-1@PLGA/HA composite microspheres were fabricated and shown to promote osteogenic differentiation of bone cells, indicating their potential for bone regeneration.
Polymer microspheres have recently shown outstanding potential for bone tissue engineering due to their large specific surface area, good porosity, injectable property, good biocompatibility, and biodegradability. Their good load-release function and surface modifiability make them useful as a carrier of drugs or growth factors for the repair of bone defects in irregularly injured or complex microenvironments, such as skull defects. In this study, berberine (BBR)-encapsulated poly(lactic-co-glycolic acid) (PLGA)/hydroxyapatite (HA) microspheres were fabricated using electrified liquid jets and a phase-separation technique, followed by modification with the 3,4-hydroxyphenalyalanine-containing recombinant insulin-like growth-factor-1 (DOPA-IGF-1). Both the BBR and the IGF-1 exhibited sustained release from the IGF-1@PLGA/HA-BBR microspheres, and the composite microspheres exhibited good biocompatibility. The results of the alkaline phosphatase (ALP) activity assays showed that the BBR and IGF-1 in the composite microspheres synergistically promoted the osteogenic differentiation of MC3T3-E1 cells. Furthermore, it was confirmed that immobilized IGF-1 enhances the mRNA expression of an osteogenic-related extracellular matrix and that BBR accelerates the mRNA expression of IGF-1-mediated osteogenic differentiation and cell mineralization. Further cellular studies demonstrate that IGF-1 could further synergistically activate the IGF-1R/PI3K/AKT/mTOR pathway using BBR, thereby enhancing IGF-1-mediated osteogenesis. Rat calvarial defect repair experiments show that IGF-1@PLGA/HA-BBR microspheres can effectively promote the complete bony connection required to cover the defect site and enhance bone defect repair. These findings suggest that IGF-1@PLGA/HA-BBR composite microspheres show a great potential for bone regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available