4.7 Article

The Role of Hydrogen Incorporation into Amorphous Carbon Films in the Change of the Secondary Electron Yield

Journal

Publisher

MDPI
DOI: 10.3390/ijms241612999

Keywords

amorphous carbon; particle accelerators; SEY; XPS; Raman spectroscopy

Ask authors/readers for more resources

There has been growing interest in using amorphous carbon thin films with low secondary electron yield (SEY) to reduce electron multipacting in particle accelerators and RF devices. Previous studies have shown that the SEY increases with the amount of hydrogen and is correlated with the Tauc gap. In this study, films produced by magnetron sputtering with varying amounts of hydrogen and deuterium were analyzed, and it was found that the maximal SEY decreases with the fraction of the graphitic phase in the films.
Over the last few years, there has been increasing interest in the use of amorphous carbon thin films with low secondary electron yield (SEY) to mitigate electron multipacting in particle accelerators and RF devices. Previous works found that the SEY increases with the amount of incorporated hydrogen and correlates with the Tauc gap. In this work, we analyse films produced by magnetron sputtering with different contents of hydrogen and deuterium incorporated via the target poisoning and sputtering of CxDy molecules. XPS was implemented to estimate the phase composition of the films. The maximal SEY was found to decrease linearly with the fraction of the graphitic phase in the films. These results are supported by Raman scattering and UPS measurements. The graphitic phase decreases almost linearly for hydrogen and deuterium concentrations between 12% and 46% (at.), but abruptly decreases when the concentration reaches 53%. This vanishing of the graphitic phase is accompanied by a strong increase of SEY and the Tauc gap. These results suggest that the SEY is not dictated directly by the concentration of H/D, but by the fraction of the graphitic phase in the film. The results are supported by an original model used to calculate the SEY of films consisting of a mixture of graphitic and polymeric phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available