4.7 Article

Transverse electric-thermal-fluid instabilities in an electromagnetic heat exchanger

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2023.124187

Keywords

Electromagnetic heating; Rayleigh-Benard convection; Thermal runaway

Ask authors/readers for more resources

Electromagnetic heat exchangers play a critical role in power beaming applications, converting incident energy into heat or mechanical work. Coolants in the system should be in gaseous phase to avoid thermal runaway. A model system consisting of a horizontal channel with a viscous, dielectric fluid and a grounded ceramic receiver is investigated, and three modes of instability are found: thermal runaway, Rayleigh-Benard convection, and a novel fringe-field instability. (c) 2023 Elsevier Ltd. All rights reserved.
Electromagnetic (EM) heat exchangers (HX) are critical components in power beaming applications where EM waves are radiated towards an EM HX, which then converts incident energy into heat or mechanical work. An EM HX consists of a lossy ceramic and a fluid flow that maintains thermal contact with and transfers heat from the ceramic. These materials have loss factors which increase with temperature, so that beyond a critical temperature thermal runaway can take place. Stable characteristic temperatures, which depend on the rate of energy removal from the system, during high-power EM heating of ceramic materials suggest that coolants would be in the gaseous phase. As a first step, we consider a model EM HX system consisting of a horizontal channel containing a viscous, dielectric fluid with a constant coefficient of thermal expansion, bounded from below by a grounded ceramic receiver of finite thickness. The system is subject to plane EM waves, propagating normally to the channel from above, and polarized in the same direction as a plane Poiseuille flow of the coolant. With the Boussinesq approximation, we calculate the base state solution of the system and then investigate the linear stability of this base-state. We find three modes of instability: thermal runaway, Rayleigh-Benard convection, and a novel instability which we call the fringe-field instability , that takes place in the plane normal to base-state flow direction. (c) 2023 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available