4.7 Article

A comprehensive hybrid transient CFD-thermal resistance model for automobile thermoelectric generators

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2023.124203

Keywords

Dynamic behaviour; Thermoelectric generator; CFD; Thermal resistance; Transient model

Ask authors/readers for more resources

This paper proposes a comprehensive hybrid transient CFD-thermal resistance model for predicting the dynamic behavior of an automobile thermoelectric generator (ATEG) system. The model considers temperature dependencies, topological connections of thermoelectric modules, and dynamic characteristics, providing high accuracy and short computational time. The dynamic behavior of the ATEG system is analyzed using transient exhaust heat as the heat source input. The model results show that the dynamic output power of the ATEG system follows the same variation trend as the exhaust temperature, but with more stability. The model is experimentally validated, yielding mean deviations of 7.70% for output voltage and 1.12% for outlet air temperature. It serves as a convenient tool for evaluating the behavior of ATEG systems under different topological connections and assessing their dynamic performance.
This paper proposes a comprehensive hybrid transient CFD-thermal resistance model to predict the dy-namic behaviour of an automobile thermoelectric generator (ATEG) system. The model takes into account the temperature dependences, the topological connection of thermoelectric modules, and the dynamic characteristics, which has the merits of high accuracy and short computational time. The dynamic be-haviour of the ATEG system is determined and thoroughly examined using the transient exhaust heat as the heat source input. According to the transient model results, the dynamic output power of the ATEG system keeps the same variation trend with the exhaust temperature, but the variation of output power is more stable. Under the whole driving cycle, the mean power and efficiency of the 1/4 ATEG system are 8.91 W and 3.39% respectively, which are 3.39% lower and 47.52% higher than those expected by steady-state analysis. Beside, the model is validated experimentally, and the mean deviations of the output voltage and outlet air temperature are 7.70% and 1.12% respectively. This model is convenient to evaluate the behaviour of the ATEG system under different topological connections and gives a fresh tool for assessing the dynamic behaviour of ATEG systems.(c) 2023 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available