4.5 Article

The interaction of charge motion and EGR on anti-knock performance and efficiency of a medium-duty gasoline engine: An experimental study

Journal

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/14680874231203738

Keywords

EGR; charge motion; knock; thermal efficiency; medium duty

Ask authors/readers for more resources

This study focuses on the interaction of charge motion and EGR on anti-knock performance and thermal efficiency of medium duty gasoline engines. The results show that the inclined swirl scheme can enhance the effectiveness of EGR in knock suppression at low-medium load, and increase the EGR tolerance at medium-high load, thus improving the thermal efficiency. The scheme adopting compound intake ports and inverse cuneiform-shaped combustion chamber can further improve both EGR tolerance and initial combustion rate, leading to significant improvement in thermal efficiency.
Due to the common operating characteristics of medium duty (MD) gasoline engines, achieving higher load at the expense of fuel efficiency is not an acceptable tradeoff. EGR dilution-stoichiometric combustion can suppress the knocking and improve the thermal efficiency, but has problems such as slow combustion rate and poor combustion stability, which have limitations in optimizing combustion for MD gasoline engines with strong swirl. The experimental investigations in this study focus on the interaction of charge motion and EGR on anti-knock performance and thermal efficiency under different load conditions, and verifies the potential to improve the thermal efficiency of inclined swirl combustion system. The results show that at low-medium load, the tumble-dominated inclined swirl scheme can enhance the effectiveness of EGR in knock suppression, thus reducing the introduction of EGR to avoid its adverse effects on the combustion duration. At medium-high load, although the above benefit wears off, it can enhance the anti-knock performance and thus advance the spark timing by increasing the EGR tolerance. The EGR ratio corresponding to the highest thermal efficiency increases with higher load. The difference in the in-cylinder flow field will affect the combustion rate in a high EGR dilution and high load condition. The scheme adopting the compound intake ports and inverse cuneiform-shaped combustion chamber can improve both EGR tolerance and initial combustion rate under high EGR dilution, with the most significant improvement in thermal efficiency, and the improvement range will increase along with the increase of load.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available