4.7 Review

Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review

Journal

MICROCHIMICA ACTA
Volume 184, Issue 1, Pages 1-44

Publisher

SPRINGER WIEN
DOI: 10.1007/s00604-016-2007-0

Keywords

Nanoparticles; Nanosheets; Sensing nanocomposites; Quantum dot; Functionalized graphene; Modified electrode

Funding

  1. National Nature Science Foundation of China [31070885]
  2. Wuhan Education Foundation [2010005]

Ask authors/readers for more resources

Functionalized nanocomposites based on various type of graphene nanomaterials including graphene, graphene oxides (GOs), and doped graphene (oxides) are widely used as materials for various sensors that can display high sensitivity, selectivity and stability. This review with 347 references summarizes advances in the preparation and functionalization of graphene nanocomposites for the application of electrochemical sensors and biosensors. Following a general introduction into the field, the article is divided into subsections on (a) the synthesis and functionalization of nanocomposites (made from graphene, various kinds of GOs, heteroatom-doped GOs), (b) on methods for functionalization of composites (with other carbon nanomaterials, metal nanoparticles, metal oxide and metal sulfide nanoparticles), (c) on functionalization with inorganic materials including polyoxometalates, hexacyanoferrates, minerals), (d) on functionalization with organic materials such as amino acids, surfactants, organic dyes, ionic liquids, macrocycles (including cyclodextrins, crown ethers and calixarenes), and (e) on functionalization with organometallics and with various other organic compounds, (f) on functionalizations with polymers such as conventional polymers, polyelectrolytes, conducting polymers, molecularly imprinted polymers, (g) on functionalization with biomolecules including proteins and nucleic acids. Other subsections cover flexible graphene and GO based nanocomposites and 3D composites. Application of graphene and GO nanocomposites are then covered in a in large section that comprises electrochemical sensors and biosensors (based on voltammetry, amperometry, potentiometry, impedimetry, electrochemiluminescence, photoelectrochemistry, field effect transistors, electrochemical immunosensors) with specific subsections on gas sensors, enzymatic biosensors and gene sensors. A concluding section covers current challenges and perspectives of graphene and GO based (bio)sensing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available