4.7 Article

Chitosan and cellulose-based composite hydrogels with embedded titanium dioxide nanoparticles as candidates for biomedical applications

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.125334

Keywords

Chitosan; Microcrystalline cellulose; Titanium dioxide; Nanocomposite hydrogel; Scaffold; Bone tissue engineering; Biological evaluation

Ask authors/readers for more resources

In this study, nanocomposite hydrogels were synthesized by impregnating polyvinyl alcohol (PVA) titanium dioxide nanoparticles (NPs) in a chitosan and cellulose-based hydrogel matrix to enhance its mechanical stability and swelling capacity. The biological evaluation results proved that these nanocomposite hydrogels were safe for use in the human body.
Hydrogel based matrices and titanium dioxide (TiO2) nanoparticles (NPs) are well established materials in bone tissue engineering. Nevertheless, there is still a challenge to design appropriate composites with enhanced mechanical properties and improved cell growth. Progressing in this direction, we synthesized nanocomposite hydrogels by impregnating TiO2 NPs in a chitosan and cellulose-based hydrogel matrix containing polyvinyl alcohol (PVA), to enhance the mechanical stability and swelling capacity. Although, TiO2 has been incorporated into single and double component matrix systems, it has rarely been combined with a tri-component hydrogel matrix system. The doping of NPs was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and small- and wide-angle X-ray scattering. Our results showed that incorporation of TiO2 NPs improved the tensile properties of the hydrogels significantly. Furthermore, we performed biological evaluation of scaffolds, swelling degree, bioactivity assessment, and hemolytic tests to prove that all types of hydrogels were safe for use in the human body. The culturing of human osteoblast-like cells MG63 on hydrogels showed better adhesion of cells in the presence of TiO2 and showed increasing proliferation with increasing amount of TiO2. Our results showed that the sample with the highest TiO2 concentration, CS/MC/ PVA/TiO2 (1 %) had the best biological properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available