4.7 Article

Dual modes reinforced silk adhesives for tissue repair: Integration of textiles and inorganic particles in silk gel for enhanced mechanical and adhesive strength

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.124911

Keywords

Strong adhesions; Excellent mechanical properties; Silk protein

Ask authors/readers for more resources

Proposed a multifunctional silk gel that forms strong adhesions to tissue, has excellent mechanical properties, and delivers growth factors to the wound.
Skin wound healing in dynamic environments remains challenging. Conventional gels are not ideal dressing materials for wound healing due to difficulties in completely sealing wounds and the inability to deliver drugs quickly and precisely to the injury. To tackle these issues, we propose a multifunctional silk gel that rapidly forms strong adhesions to tissue, has excellent mechanical properties, and delivers growth factors to the wound. Specifically, the presence of Ca2+ in the silk protein leads to a solid adhesion to the wet tissue through a chelation reaction with water-trapping behavior; the integrated chitosan fabric and CaCO3 particles ensure enhanced mechanical strength of the silk gel for better adhesion and robustness during wound repair; and the preloaded growth factor further promoted wound healing. The results showed the adhesion and tensile breaking strength were as high as 93.79 kPa and 47.20 kPa, respectively. MSCCA@CaCO3-aFGF could remedy the wound model in 13 days, with 99.41 % wound shrinkage without severe inflammatory responses. Due to strong adhesion properties and mechanical strength, MSCCA@CaCO3-aFGF can be a promising alternative to conventional sutures and tissue closure staples for wound closure and healing. Therefore, MSCCA@CaCO3-aFGF is expected to be a strong candidate for the next generation of adhesives.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available