4.7 Article

Toward function starch nanogels by self-assembly of polysaccharide and protein: From synthesis to potential for polyphenol delivery

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.125697

Keywords

Starch; Nanogels; Delivery

Ask authors/readers for more resources

In this study, carboxymethyl starch-lysozyme nanogels (CMSLy NGs) were prepared using carboxymethyl starch and lysozyme. The nanogels showed a high EGCG encapsulation rate and demonstrated controlled release potential under simulated gastrointestinal conditions. This research suggests the potential application of protein and polysaccharides-based nanogels in the delivery system of bioactive compounds.
Nanogels formed by self-assembly of natural proteins and polysaccharides have attracted great interest as potential carriers of bioactive molecules. Herein, we reported that carboxymethyl starch-lysozyme nanogels (CMSLy NGs) were prepared using carboxymethyl starch and lysozyme by green and facile electrostatic self-assembly, and the nanogels served as epigallocatechin gallate (EGCG) delivery systems. The dimensions and structure of the prepared starch-based nanogels (i.e., CMS-Ly NGs) were characterized by dynamic light scattering (DLS), & zeta;-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA). FT-IR and 1H NMR spectra together confirmed the formation of CMS; FT-IR spectra confirmed the formation of CMS-Ly NGs; XRD spectra confirmed the disruption of the crystal structure of lysozyme after electrostatic self-assembly with CMS, and further confirmed the formation of nanogels. TGA demonstrated the thermal stability of nanogels. More importantly, the nanogels showed a high EGCG encapsulation rate of 80.0 & PLUSMN; 1.4 %. The CMS-Ly NGs encapsulated with EGCG exhibited regular spherical structure and stable particle size. Under the simulated gastrointestinal environmental conditions, CMS-Ly NGs encapsulated with EGCG showed the controlled release potential, which increased its utilization. Additionally, anthocyanins can also be encapsulated in CMS-Ly NGs and showed slow-release properties during gastrointestinal digestion in the same way. Cytotoxicity assay also demonstrated good biocompatibility between CMS-Ly NGs and CMS-Ly NGs encapsulated with EGCG. The findings of this research suggested the potential application of protein and polysaccharidesbased nanogels in the delivery system of bioactive compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available