4.7 Article

Preparation of carboxymethylcellulose / ZnO / chitosan composite hydrogel microbeads and its drug release behaviour

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.125716

Keywords

Crosslinked porous starch; Curcumin; Adsorption; Composite hydrogel microbeads; Drug delivery

Ask authors/readers for more resources

In this study, a novel hydrogel microbeads, consisting of carboxymethylcellulose / ZnO / chitosan and loaded with crosslinked porous starch / curcumin, were designed and prepared. The microbeads exhibited enhanced encapsulation efficiency of curcumin for drug delivery to specific sites. The pH-sensitive drug delivery system showed good drug stability and bioavailability, making it suitable for targeting drug delivery to the small intestine.
In this study, a novel carboxymethylcellulose / ZnO / chitosan (CMC / ZnO / Cs) hydrogel microbeads loaded with crosslinked porous starch / curcumin (CPS / Cur) were designed and prepared to improve the encapsulation efficiency of curcumin for drug delivery to specific sites. It was found that the total pore volume of crosslinked porous starch (CPS) was increased by 1150 % when compared to the native starch (NS), and the adsorption ratio of curcumin by CPS was enhanced by 27 % when compared to NS. Secondly, the swelling ratio of composite hydrogel microbeads was within 25 % in an acidic environment at pH 1.2, and the swelling ratio of hydrogel microbeads sharply increased to 320 % similar to 370 % at pH 6.8 and 7.4. In addition, the results of in vitro simulated release experiments showed that the released amount of hydrogel microbeads loaded with NS/Cur and CPS/Cur in SGF were within 7 % in simulated gastric fluid (SGF). The highest released amount of curcumin was 65.26 % for hydrogel beads loaded with CPS/Cur, which was 26 % lower than that of hydrogel microbeads loaded with Cur in simulated intestinal fluid (SIF). In simulated colonic fluid (SCF), the released amount of hydrogel microbeads loaded with CPS/Cur and Cur were 73.96 % and 91.69 %, respectively. In conclusion, pH-sensitive drug delivery system with good drug stability and bioavailability were successfully prepared with carboxymethylcellulose / ZnO / chitosan bead, suitable targeting drug delivery to the small intestine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available