4.7 Article

Press-transferred carbon black nanoparticles on board of microfluidic chips for rapid and sensitive amperometric determination of phenyl carbamate pesticides in environmental samples

Journal

MICROCHIMICA ACTA
Volume 183, Issue 12, Pages 3143-3149

Publisher

SPRINGER WIEN
DOI: 10.1007/s00604-016-1964-7

Keywords

Microchip; Nanocarbon; Electrophoresis; Carbofuran; Isoprocarb; Carbaryl; Micro solid phase extraction; Water screening analysis; Environmental analysis

Funding

  1. Spanish Ministry of Economy and Competitiveness [CTQ 2014-58643-R]
  2. Nanoavansens program from the Community of Madrid [S2013/MIT-3029]

Ask authors/readers for more resources

The authors describe a strategy for rapid and sensitive determination of phenyl carbamate pesticides in environmental samples. It consists of the following steps: (a) Enrichment and clean-up of the analytes using a C18 microtip based procedure; (b) alkaline hydrolysis of the carbamates (carbofuran, isoprocarb and carbaryl) to form phenol derivatives; and (c) fast separation and amperometric detection in a microfluidic chip (MCs). The microchips were fabricated by using press-transferred carbon black nanoparticles (CB-NPs) as electrochemical sensing nanomaterial. The excellent electrochemical behavior of the CB-NPs coupled to the microchip warrants good separation and allows for the voltammetric determination (best at a working voltage of +0.70 V vs Ag/AgCl) of the carbamates within < 6 min. The authors also describe a rapid procedure for the clean-up and enrichment of the carbamates from real samples by using a C18 microtip. The procedure allowed a 10-fold enrichment of the analytes, and this led to a detection limits in I ' the 0.7 to 1.2 mu M concentration range. The assay was applied to samples of river, lake and irrigation water that were spiked with carbamates at 50 and 100 mu M levels. Recoveries are in the 87 to 108 % range, and RSDs (n = 3) in the 5 to 11 % range. The exploitation of the such nanomaterials coupled to microfluidics and microextraction procedures for real sample analysis in our preception represents a most viable tool for the analysis of complex real samples, for on-site environmental monitoring, and for rapid diagnosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available