4.7 Article

Identification and validation of ferroptosis-related biomarkers in steroid-induced osteonecrosis of the femoral head

Journal

INTERNATIONAL IMMUNOPHARMACOLOGY
Volume 124, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.intimp.2023.110906

Keywords

Steroid-induced osteonecrosis of the femoral; head; Ferroptosis-related biomarker; Infiltrating immune cells; Protein data independent acquisition analysis; Vitexin

Ask authors/readers for more resources

This study identified and validated hub genes related to ferroptosis and investigated the correlation between these genes and immune cell infiltration in steroid-induced osteonecrosis of the femoral head (SIONFH).
Objectives: Treatment of steroid-induced osteonecrosis of the femoral head (SIONFH) is challenging. Due to the limited understanding of its molecular mechanisms, investigating the potential mechanisms of ferroptosis will shed light on SIONFH and provide directions for treating this disease. Methods: The GSE123568 dataset was utilized to apply various bioinformatics methodologies to identify ferroptosis-related hub genes (FRHGs). Subsequently, the importance of these genes and the reliability of the results were confirmed using protein data-independent acquisition (DIA) and cell experiments. Finally, we assessed the correlation between FRHG expression and immune cell infiltration. Results: Thirty-one hub genes were identified and validated by constructing a protein-protein interaction network and subsequent screening using experimentally determined interactions. These 31 hub genes were enriched in immunity, the AMPK signaling pathway, and the Toll-like receptor signaling pathway. Next, we identified a diagnostic marker comprising two ferroptosis-related genes, NCF2 and SLC2A1. The differential expression of these two genes in healthy and necrotic regions was confirmed by protein DIA analysis. Cell experiments verified the link between FRHGs and ferroptosis and preliminarily explored the potential mechanism of the antioxidant vitexin in promoting osteogenic differentiation in cells. The diagnostic efficiency of these two markers was confirmed by receiver operating characteristic curve (ROC) curves, yielding an area under the curve of 1.0. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated enrichment of FRHGs in the superoxide anion and HIF-1 signaling pathways. A significant correlation was observed between FRHGs and various immune cell populations. Conclusion: NCF2 and SLC2A1 are promising ferroptosis-related diagnostic biomarkers of SIONFH. Concurrently, we embarked on a preliminary investigation to elucidate the potential mechanism underlying the promotion of osteogenic differentiation by the antioxidant vitexin. Moreover, these biomarkers are associated with distinct immune cell populations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available