4.7 Article

CXCL1 enhances COX-II expression in rheumatoid arthritis synovial fibroblasts by CXCR2, PLC, PKC, and NF-κB signal pathway

Journal

INTERNATIONAL IMMUNOPHARMACOLOGY
Volume 124, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.intimp.2023.110909

Keywords

CXCL1; Rheumatoid arthritis; Synovial fibroblasts; COX-II

Ask authors/readers for more resources

This study provides novel insights into the role of CXCL1 in the pathogenesis of rheumatoid arthritis by promoting COX-II expression to regulate disease progression.
Rheumatoid arthritis (RA) is the most common autoimmune disease, affecting the joints of the hands and feet. Several chemokines and their receptors are crucial in RA pathogenesis through immune cell recruitment. C-X-C Motif Chemokine Ligand 1 (CXCL1), a chemokine for the recruitment of various immune cells, can be upregulated in patients with RA. However, the discussion on the role of CXCL1 in RA pathogenesis is insufficient. Here, we found that CXCL1 promoted cyclooxygenase-2 (COX-II) expression in a dose- and time-dependent manner in rheumatoid arthritis synovial fibroblasts (RASFs). CXCL1 overexpression in RASFs led to a significant increase in COX-II expression, while the transfection of RASFs with the shRNA plasmid resulted in a noticeable decrease in COX-II expression. Next, we delineated the molecular mechanism underlying CXCL1-promoted COX-II expression and noted that CXC chemokine receptor 2 (CXCR2), phospholipase C (PLC), and protein kinase C (PKC) signal transduction were responsible for COX-II expression after CXCL1 incubation for RASFs. Finally, we confirmed the transcriptional activation of nuclear factor kappa B (NF-kappa B) in RASFs after incubation with CXCL1. In conclusion, the current study provided a novel insight into the role of CXCL1 in RA pathogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available