4.7 Article

Integrating Structural and Thermodynamic Mechanisms for Methanol Intercalated Kaolinite Nanoclay: Experiments and Density Functional Theory Simulation

Journal

INORGANIC CHEMISTRY
Volume 62, Issue 40, Pages 16475-16484

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.3c02185

Keywords

-

Ask authors/readers for more resources

This study investigated the interlayer bonding, structure evolution, and energetics of methanol intercalated kaolinite (Kaol) using density functional theory (DFT) calculation and experimental characterizations. The intercalation process is energy-consuming and is affected by the presence of dimethyl sulfoxide (DMSO). The formation energy from intermediate structures to final structures is reduced under the participation of water.
Methanol intercalated kaolinite (Kaol) plays an important role in the intercalation, exfoliation, and organic modification of kaolinite nanoclay. However, the evolution of the layer structure of Kaol and its thermodynamic stability during the methanol intercalation process have not been clarified at the atomic level. Here, by combination of density functional theory (DFT) calculation and experimental characterizations, the interlayer bonding, structure evolution, and energetics from dimethyl sulfoxide (DMSO) intercalated Kaol to methanol intercalated Kaol were investigated. Partial methanol molecules entered the interlayers of Kaol to form some intermediate structures with the same d-spacing as that of DMSO intercalated Kaol. Different numbers of grafted methoxy and water molecules coexist together in the interlayer to form the final structures of methanol intercalated kaolinite (MeOm /nH(2)O/Kaol). The whole intercalation process is energy-consuming, and the presence of DMSO would affect the intercalation of methanol. Meanwhile, the formation energy from intermediate structures to final structures was found reduced under the participation of water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available