4.7 Article

Green Synthesis of Carboxymethyl Chitosan-Based CuInS2 QDs with Luminescent Response toward Pb2+ Ion and Its Application in Bioimaging

Journal

INORGANIC CHEMISTRY
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.3c02901

Keywords

-

Ask authors/readers for more resources

A simple and environmentally friendly method for the synthesis of CuInS2 QDs based on polysaccharide has been developed, which shows excellent fluorescence properties and high sensitivity for Pb2+ detection.
Polysaccharide-based QDs have attracted great attention in the field of biological imaging and diagnostics. How to get rid of the high heavy metal toxicity resulting from conventional Cd- and Pb-based QDs is now the main challenge. Herein, we offer a simple and environmentally friendly approach for the direct interaction of thiol-ending carboxymethyl chitosan (CMC-SH) with metal salt precursors, resulting in CuInS2 QDs based on polysaccharides. A nucleation-growth mechanism based on the LaMer model can explain how CMC-CuInS2 QDs are formed. As-prepared water-soluble CMC-CuInS2 QDs exhibit monodisperse particles with sizes of 5.5-6.5 nm. CMC-CuInS2 QDs emit the bright-green fluorescence at 530 nm when excited at 466 nm with the highest quantum yield of similar to 18.0%. Meanwhile, the fluorescence intensity of CMC-CuInS2 QD aqueous solution is quenched with the addition of Pb2+ and the minimal limit of detection is as little as 0.4 nM. Furthermore, due to its noncytotoxicity, great biocompatibility, and strong biorecognition ability, CMC-CuInS2 QDs can be exploited as a possible cell membrane imaging reagent. The imaging studies also demonstrate that CMC-CuInS2 QDs are suitable for Pb2+ detection in live cells and living organisms (zebrafish). Thus, this work offers such an efficient, green, and practical method for creating low-toxicity and water-soluble QD nanosensors for a sensitive and selective detection of toxic metal ion in live cells and organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available