4.7 Article

Regulating the Optical Properties of Cs3MnBr5 Nanocrystals in Glasses for Narrow-Band Green Emission

Journal

INORGANIC CHEMISTRY
Volume 62, Issue 32, Pages 13001-13010

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.3c01782

Keywords

-

Ask authors/readers for more resources

Environmentally friendly phosphors with narrow-band green luminescence were developed by preparing nanocrystals in glass. The addition of Zn can change the emission color and enhance the quantum yield. These materials also exhibit good thermal and chemical stabilities, making them suitable for use in solid-state lighting and backlight display applications.
Environmentally friendly phosphors with narrow-band green luminescence are in great demand for solid-state lighting and backlight display applications. Herein, all inorganic lead-free Cs3MnBr5 nanocrystals (NCs) are prepared in glass with dual-band luminescence and a high photoluminescence (PL) quantum yield of 60.2%. However, due to the short separation and strong coupling interaction between neighboring [ M n B r 4 ] 2 - units, Cs3MnBr5 NCs undergo energy transfer from a single [ M n B r 4 ] 2 - unit to coupled [ M n B r 4 ] 2 - clusters and give green-red dual-band PL. Incorporation of Zn into Cs3MnBr5 NCs therefore enlarges the average separation and reduces the interaction between neighboring [ M n B r 4 ] 2 - units to inhibit energy transfer from the green-emitting [ M n B r 4 ] 2 - unit to coupled [ M n B r 4 ] 2 - clusters, thus changing the dual-band PL into single-band green PL at 524 nm with a full width at half maximum of 47 nm and a maximal PL quantum yield of 50%. Low-temperature PL also demonstrates that partial replacement of Mn2+ ions by Zn2+ ions can further confine the exciton in the [ M n B r 4 ] 2 - unit and suppress the energy transfer. These Cs3MnBr5 NCs- and Zn/Cs3MnBr5 NCs-embedded glasses also possess good thermal, photo-, and chemical stabilities. These features demonstrate that these Cs3MnBr5 NCs- and Zn/Cs3MnBr5 NCs-embedded glasses have potential applications for efficient, environmental-friendly, and stable green phosphors in the fields of solid-state lighting and backlight display.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available