4.7 Article

Isoreticular Chemistry and Applications of Supramolecularly Assembled Copper-Adenine Porous Materials

Journal

INORGANIC CHEMISTRY
Volume 62, Issue 45, Pages 18496-18509

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.3c02708

Keywords

-

Ask authors/readers for more resources

Metal-organic frameworks (MOFs) are important and widely applied materials in the field of chemistry. This study successfully prepared a series of organic-metal materials by extending similar strategies. These materials have consistent structures and porous crystalline structures with humidity-driven breathing behavior. In addition, the study found that these materials exhibit good adsorption and release properties for certain drugs.
The useful concepts of reticular chemistry, rigid and predictable metal nodes together with strong and manageable covalent interactions between metal centers and organic linkers, have made the so-called metal-organic frameworks (MOFs) a flourishing area of enormous applicability. In this work, the extension of similar strategies to supramolecularly assembled metal-organic materials has allowed us to obtain a family of isoreticular compounds of the general formula [Cu-7(mu-adeninato-kappa N3:kappa N9)(6)(mu(3)-OH)(6)(mu-OH2)(6)](OOC-R-COO)nH(2)O (R: ethylene-, acetylene-, naphthalene-, or biphenyl-group) in which the rigid copper-adeninato entities and the organic dicarboxylate anions are held together not by covalent interactions but by a robust and flexible network of synergic hydrogen bonds and pi-pi stacking interactions based on well-known supramolecular synthons (SMOFs). All compounds are isoreticular, highly insoluble, and water-stable and show a porous crystalline structure with a pcu topology containing a two-dimensional (2D) network of channels, whose dimensions and degree of porosity of the supramolecular network are tailored by the length of the dicarboxylate anion. The partial loss of the crystallization water molecules upon removal from the mother liquor produces a shrinkage of the unit cell and porosity, which leads to a color change of the compounds (from blue to olive green) if complete dehydration is achieved by means of gentle heating or vacuuming. However, the supramolecular network of noncovalent interactions is robust and flexible enough to reverse to the expanded unit cell and color after exposure to a humid atmosphere. This humidity-driven breathing behavior has been used to design a sensor in which the electrical resistance varies reversibly with the degree of humidity, very similar to the water vapor adsorption isotherm of the SMOF. The in-solution adsorption properties were explored for the uptake and release of the widely employed 5-fluorouracil, 4-aminosalycilic acid, 5-aminosalycilic acid, and allopurinol drugs. In addition, cytotoxicity activity assays were completed for the pristine and 5-fluorouracil-loaded samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available