4.7 Article

Learning Modular Robot Control Policies

Journal

IEEE TRANSACTIONS ON ROBOTICS
Volume -, Issue -, Pages -

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2023.3284362

Keywords

Cellular and modular robots; deep learning in robotics and automation; legged robots; model learning for control

Categories

Ask authors/readers for more resources

Modular robots can be rearranged into new designs for different tasks, but each design requires its own control policy. To address this, we propose a modular policy framework that creates a policy conditioned on the hardware arrangement, allowing one training process to control various designs.
Modular robots can be rearranged into a new design, perhaps each day, to handle a wide variety of tasks by forming a customized robot for each new task. However, reconfiguring just the mechanism is not sufficient: each design also requires its own unique control policy. One could craft a policy from scratch for each new design, but such an approach is not scalable, especially given the large number of designs that can be generated from even a small set of modules. Instead, we create a modular policy framework where the policy structure is conditioned on the hardware arrangement, and use just one training process to create a policy that controls a wide variety of designs. Our approach leverages the fact that the kinematics of a modular robot can be represented as a design graph, with nodes as modules and edges as connections between them. Given a robot, its design graph is used to create a policy graph with the same structure, where each node contains a deep neural network, and modules of the same type share knowledge via shared parameters (e.g., all legs on a hexapod share the same network parameters). We developed a model-based reinforcement learning algorithm, interleaving model learning and trajectory optimization to train the policy. We show the modular policy generalizes to a large number of designs that were not seen during training without any additional learning. Finally, we demonstrate the policy controlling a variety of designs to locomote with both simulated and real robots.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available