4.1 Article

Martian cratering 11. Utilizing decameter scale crater populations to study Martian history

Journal

METEORITICS & PLANETARY SCIENCE
Volume 52, Issue 3, Pages 493-510

Publisher

WILEY
DOI: 10.1111/maps.12807

Keywords

-

Funding

  1. International Space Science Institute (ISSI) in Bern, Switzerland
  2. Mars Data Analysis Program (MDAP) grant from NASA [NNX10AO24G]
  3. NASA [127895, NNX10AO24G] Funding Source: Federal RePORTER

Ask authors/readers for more resources

New information has been obtained in recent years regarding formation rates and the production size-frequency distribution (PSFD) of decameter-scale primary Martian craters formed during recent orbiter missions. Here we compare the PSFD of the currently forming small primaries (P) with new data on the PSFD of the total small crater population that includes primaries and field secondaries (P + fS), which represents an average over longer time periods. The two data sets, if used in a combined manner, have extraordinary potential for clarifying not only the evolutionary history and resurfacing episodes of small Martian geological formations (as small as one or few km 2) but also possible episodes of recent climatic change. In response to recent discussions of statistical methodologies, we point out that crater counts do not produce idealized statistics, and that inherent uncertainties limit improvements that can be made by more sophisticated statistical analyses. We propose three mutually supportive procedures for interpreting crater counts of small craters in this context. Applications of these procedures support suggestions that topographic features in upper meters of mid-latitude ice-rich areas date only from the last few periods of extreme Martian obliquity, and associated predicted climate excursions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available