4.8 Article

Asymmetric response of aboveground and belowground temporal stability to nitrogen and phosphorus addition in a Tibetan alpine grassland

Journal

GLOBAL CHANGE BIOLOGY
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1111/gcb.16967

Keywords

belowground productivity; belowground stability; biodiversity; nitrogen and phosphorus addition; plant functional groups; species synchrony

Ask authors/readers for more resources

While anthropogenic eutrophication is known to impair aboveground stability, its effects on belowground stability remain poorly understood. In a nitrogen and phosphorus addition experiment in a Tibetan alpine grassland, the synchronization of grasses, the most abundant plant functional group, reduced their stability, which in turn impaired aboveground stability, but this was a poor predictor of belowground stability responses. This suggests that the ecological consequences of nutrient enrichment on ecosystem stability cannot be accurately predicted from the responses of aboveground components, highlighting the need for a better understanding of belowground ecosystem dynamics.
Anthropogenic eutrophication is known to impair the stability of aboveground net primary productivity (ANPP), but its effects on the stability of belowground (BNPP) and total (TNPP) net primary productivity remain poorly understood. Based on a nitrogen and phosphorus addition experiment in a Tibetan alpine grassland, we show that nitrogen addition had little impact on the temporal stability of ANPP, BNPP, and TNPP, whereas phosphorus addition reduced the temporal stability of BNPP and TNPP, but not ANPP. Significant interactive effects of nitrogen and phosphorus addition were observed on the stability of ANPP because of the opposite phosphorus effects under ambient and enriched nitrogen conditions. We found that the stability of TNPP was primarily driven by that of BNPP rather than that of ANPP. The responses of BNPP stability cannot be predicted by those of ANPP stability, as the variations in responses of ANPP and BNPP to enriched nutrient, with ANPP increased while BNPP remained unaffected, resulted in asymmetric responses in their stability. The dynamics of grasses, the most abundant plant functional group, instead of community species diversity, largely contributed to the ANPP stability. Under the enriched nutrient condition, the synchronization of grasses reduced the grass stability, while the latter had a significant but weak negative impact on the BNPP stability. These findings challenge the prevalent view that species diversity regulates the responses of ecosystem stability to nutrient enrichment. Our findings also suggest that the ecological consequences of nutrient enrichment on ecosystem stability cannot be accurately predicted from the responses of aboveground components and highlight the need for a better understanding of the belowground ecosystem dynamics. Anthropogenic eutrophication is known to impair aboveground stability, but its effects on belowground stability remain poorly understood. Based on a nitrogen and phosphorus addition experiment in a Tibetan alpine grassland, we show that the synchronization of grasses (the most abundant plant functional group) resulted in a reduction in their stability, which, in turn, impaired aboveground stability, but remained a poor predictor of belowground stability responses. It suggests that the ecological consequences of nutrient enrichment on ecosystem stability cannot be accurately predicted from the responses of aboveground components, highlighting the need for a better understanding of the belowground ecosystem dynamics.image

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available