4.8 Article

Hydric effects on thermal tolerances influence climate vulnerability in a high-latitude beetle

Journal

GLOBAL CHANGE BIOLOGY
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1111/gcb.16830

Keywords

climate change; climate vulnerability; mechanistic niche model; precipitation; thermal tolerance; water loss rates

Ask authors/readers for more resources

Species' thermal tolerances are influenced by the hydric environment. As environments become hotter and drier, reducing water loss may lead to lower thermal tolerances. The correlation between water loss rate and CTmax suggests the need for a whole-organism perspective in studying thermal tolerances. Rating: 8 out of 10.
Species' thermal tolerances are used to estimate climate vulnerability, but few studies consider the role of the hydric environment in shaping thermal tolerances. As environments become hotter and drier, organisms often respond by limiting water loss to lower the risk of desiccation; however, reducing water loss may produce trade-offs that lower thermal tolerances if respiration becomes inhibited. Here, we measured the sensitivity of water loss rate and critical thermal maximum (CTmax) to precipitation in nature and laboratory experiments that exposed click beetles (Coleoptera: Elateridae) to acute- and long-term humidity treatments. We also took advantage of their unique clicking behavior to characterize subcritical thermal tolerances. We found higher water loss rates in the dry acclimation treatment compared to the humid, and water loss rates were 3.2-fold higher for individuals that had experienced a recent precipitation event compared to individuals that had not. Acute humidity treatments did not affect CTmax, but precipitation indirectly affected CTmax through its effect on water loss rates. Contrary to our prediction, we found that CTmax was negatively associated with water loss rate, such that individuals with high water loss rate exhibited a lower CTmax. We then incorporated the observed variation of CTmax into a mechanistic niche model that coupled leaf and click beetle temperatures to predict climate vulnerability. The simulations indicated that indices of climate vulnerability can be sensitive to the effects of water loss physiology on thermal tolerances; moreover, exposure to temperatures above subcritical thermal thresholds is expected to increase by as much as 3.3-fold under future warming scenarios. The correlation between water loss rate and CTmax identifies the need to study thermal tolerances from a whole-organism perspective that considers relationships between physiological traits, and the population-level variation in CTmax driven by water loss rate complicates using this metric as a straightforward proxy of climate vulnerability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available