4.5 Article

Research and Analysis on the Physical and Chemical Properties of Molten Bath with Bottom-Blowing in EAF Steelmaking Process

Publisher

SPRINGER
DOI: 10.1007/s11663-016-0737-3

Keywords

-

Funding

  1. National Nature Science Foundation of China [51474024, 51334001]
  2. National Key Technology R&D Program of the 12th Five-Year Plan [12FYP 2015BAF03B01]

Ask authors/readers for more resources

Bottom-blowing technology is widely adopted in electric arc furnace (EAF) steelmaking to promote the molten bath fluid flow, accelerate the metallurgical reaction, and improve the quality of molten steel. In this study, a water model experiment and a computational fluid dynamics model were established to investigate the effects of bottom-blowing gas flow rate on the fluid flow characteristics in the EAF molten bath. The results show that the interaction among the bottom-blowing gas streams influences the molten bath flow field, and increasing the bottom-blowing gas flow rate can accelerate the fluid flow and decrease the volume of the dead zone. Based on industrial application research, the physical and chemical properties of the molten bath with bottom-blowing were analyzed. Compared with traditional melting conditions without bottom-blowing, bottom-blowing technology demonstrates obvious advantages in promoting the heat transfer and metallurgical reactions in the molten bath. With the bottom-blowing arrangement, the dephosphorization and decarburization rates are accelerated, the contents of FeO and T. Fe in endpoint slag are decreased, and the endpoint carbon-oxygen equilibrium of molten steel is improved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available