4.6 Article

Identification of a potential signature to predict the risk of postmenopausal osteoporosis

Journal

GENE
Volume 894, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2023.147942

Keywords

Postmenopausal osteoporosis; Risk score; Diagnostic model; Bone turnover markers

Ask authors/readers for more resources

A novel risk model based on SCUBE3, TNNC1, SPON1, SEPT12 and ULBP1 genes was developed for predicting PMOP risk, with higher risk score indicating higher risk of suffering from PMOP. Significant differences in signaling pathway activities were observed between the high-risk score group and the low-risk score group.
Background: Postmenopausal osteoporosis (PMOP) is related to the elevated risk of fracture in postmenopausal women. Thus, to effectively predict the occurrence of PMOP, we explored a novel gene signature for the prediction of PMOP risk.Methods: The WGCNA analysis was conducted to identify the PMOP-related gene modules based on the data from GEO database (GSE56116 and GSE100609). The limma R package was applied for screening differentially expressed genes (DEGs) based on the data from GSE100609 dataset. Next, LASSO Cox algorithm were applied to identify valuable PMOP-related risk genes and construct a risk score model. GSEA was then conducted to analyze potential signaling pathways between high-risk (HR) score and low-risk (LR) score groups.Results: A novel risk model with five PMOP-related risk genes (SCUBE3, TNNC1, SPON1, SEPT12 and ULBP1) was developed for predicting PMOP risk status. RT-qPCR and western blot assays validated that compared to postmenopausal non-osteoporosis (non-PMOP) patients, SCUBE3, ULBP1, SEPT12 levels were obviously elevated, and TNNC1 and SPON1 levels were reduced in blood samples from PMOP patients. Additionally, PMOP-related pathways such as MAPK signaling pathway, PI3K-Akt signaling pathway and HIF-1 signaling pathway were significantly activated in the HR-score group compared to the LR-score group. The circRNA-gene-miRNA and gene-transcription factor networks showed that 533 miRNAs, 13 circRNAs and 40 TFs might be involved in regulating the expression level of these five PMOP-related genes.Conclusion: Collectively, we developed a PMOP-related gene signature based on SCUBE3, TNNC1, SPON1, SEPT12 and ULBP1 genes, and higher risk score indicated higher risk suffering from PMOP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available