4.6 Article

Genetic diversity and natural selection of apical membrane antigen-1 (ama-1) in Cameroonian Plasmodium falciparum isolates

Journal

GENE
Volume 894, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2023.147956

Keywords

Plasmodium falciparum; Apical membrane antigen-1; Vaccine; Population genetics; Evolution; Natural selection

Ask authors/readers for more resources

This study investigates the genetic diversity and natural selection of the Pfama-1 gene in Plasmodium falciparum isolates from Cameroon. The study finds a considerable nucleotide and haplotype diversity, as well as specific mutations in Cameroonian isolates. Positive diversifying selection and the identification of selected codon sites suggest the potential implication of these genetic variations in host immune pressure and parasite-binding complex modulation. The findings provide valuable baseline data for malaria vaccine design.
Antigenic variation associated with genetic diversity in global Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major impediment to designing an effective malaria vaccine. Here, we report the first study on genetic diversity and natural selection of the Pfama-1 gene in P. falciparum isolates from Cameroon. A total of 328 P. falciparum positive samples collected during 2016 and 2019 from five localities of Cameroon were analysed. The ectodomain coding fragment of Pfama-1 gene was amplified for polymorphism profiling and natural selection analysis. A total of 108 distinct haplotypes were found in 203 P. falciparum isolates with considerable nucleotide diversity (pi = 0.016) and haplotype diversity (Hd = 0.976). Most amino acid substitutions detected were scattered in ectodomain-I and few specific mutations viz P145L, K148Q, K462I, L463F, N471K, S482L, E537G, K546R and I547F were seen only in Cameroonian isolates. A tendency of natural selection towards positive diversifying selection was observed (Taj-D = 2.058). Five positively selected codon sites (P145L, S283L, Q308E/K, P330S and I547F) were identified, which overlapped with predicted B-cell epitopes and red blood cell (RBC) binding sites, suggesting their potential implication in host immune pressure and parasite-RBC binding complex modulation. The Cameroonian P. falciparum populations indicated a moderate level of genetic differentiation when compared with global sequences, with few exceptions from Vietnam and Venezuela. Our findings provide baseline data on existing Pfama-1 gene polymorphisms in Cameroonian field isolates, which will be useful information for malaria vaccine design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available