4.5 Article

The Effects of Bottom Blowing Gas Flow Rate Distribution During the Steelmaking Converter Process on Mixing Efficiency

Publisher

SPRINGER
DOI: 10.1007/s11663-016-0593-1

Keywords

-

Funding

  1. China Steel Corporation in Taiwan

Ask authors/readers for more resources

Featuring the advantages of top-blown and bottom-blown oxygen converters, top and bottom combined blown converters are mainstream devices used in steelmaking converter. This study adopted the FLUENT software to develop a numerical model that simulates 3D multiphase flows of gas (air and argon), liquid steel, and slag. Ten numerical experiments were conducted to analyze the effects that the bottom blowing gas flow rate distribution patterns (uniform, linear fixed total flow rate, linear fixed maximal flow rate, and V-type) and bottom blowing gas flow distribution gradients of combined blown converters exert on slag surface stirring heights, flow field patterns, simulation system dynamic pressures, mixing time, and liquid steel-slag interface velocity. The simulation results indicated that the mixing efficiency was highest for the linear fixed total flow rate, followed by the linear fixed maximal flow rate, V-type, and uniform patterns. The bottom blowing gas flow rate distribution exhibited linear patterns and large gradients, and high bottom blowing total flow rates increased the mixing efficiency substantially. In addition, the results suggested that even when bottom blowing total flow rate was reduced, adopting effective bottom blowing gas flow rate distribution patterns and gradients could improve the mixing efficiency. (C) The Minerals, Metals & Materials Society and ASM International 2016

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available