4.6 Article

Microstructural Evolution of Cu/Solder/Cu Pillar-Type Structures with Different Diffusion Barriers

Publisher

SPRINGER
DOI: 10.1007/s11661-016-3591-7

Keywords

-

Funding

  1. Ministry of Science and Technology of Taiwan
  2. Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan

Ask authors/readers for more resources

Microstructural evolution of the Cu/solder/Cu pillar-type bonding structures with a reduced solder volume subjected to thermal aging at 423 K to 473 K(150 A degrees C to 200 A degrees C) was investigated. In a bonding structure employing a Ni single layer as the diffusion barrier, solder was consumed with formation of the Ni3Sn4 phase at the bonding interfaces due to an usual Sn/Ni interfacial reaction. However, an unusual Sn/Cu reaction occurred with formation of the Cu6Sn5 (and Cu3Sn) phase on the periphery of the Cu pillar due to out-diffusion of Sn toward the pillar periphery. Consumption of solder was accelerated by the above two reactions which led to the formation of a continuous gap in the bonding structure. Employment of a thicker Ni layer plus a Cu cap layer as the diffusion barrier in the bonding structure effectively blocked out-diffusion of Sn toward the periphery of the Cu pillar and therefore retarded the gap formation. The retardation effect was attributed to an increment of diffusion distance on the pillar periphery due to an effective diffusion barrier composed by Ni and thicker Cu-Sn (Cu6Sn5 + Cu3Sn) phase layers. Detailed phase identification and microstructural evolution in the bonding structures were also investigated using scanning electron microscopy and transmission electron microscopy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available