4.7 Article

The EU Center of Excellence for Exascale in Solid Earth (ChEESE): Implementation, results, and roadmap for the second phase

Publisher

ELSEVIER
DOI: 10.1016/j.future.2023.04.006

Keywords

Center of Excellence (CoE); EuroHPC; Exascale transition; Code scalability; Geophysics; Natural hazards; HPC service enabling; Urgent computing; Early warning forecast

Ask authors/readers for more resources

The EU Center of Excellence for Exascale in Solid Earth (ChEESE) focuses on developing high-level transition capabilities in the geophysics domain to address computational challenges related to earth sciences. The project has successfully optimized community codes and implemented pilot demonstrators to tackle capability and capacity challenges in areas such as seismology, tsunami science, volcanology, and magnetohydrodynamics. The partnership with the Industry and User Board (IUB) has facilitated the dissemination of results across various sectors and institutions.
The EU Center of Excellence for Exascale in Solid Earth (ChEESE) develops exascale transition capabilities in the domain of Solid Earth, an area of geophysics rich in computational challenges embracing different approaches to exascale (capability, capacity, and urgent computing). The first implementation phase of the project (ChEESE-1P; 2018-2022) addressed scientific and technical computational challenges in seismology, tsunami science, volcanology, and magnetohydrodynamics, in order to understand the phenomena, anticipate the impact of natural disasters, and contribute to risk management. The project initiated the optimisation of 10 community flagship codes for the upcoming exascale systems and implemented 12 Pilot Demonstrators that combine the flagship codes with dedicated workflows in order to address the underlying capability and capacity computational challenges. Pilot Demonstrators reaching more mature Technology Readiness Levels (TRLs) were further enabled in operational service environments on critical aspects of geohazards such as long-term and short-term probabilistic hazard assessment, urgent computing, and early warning and probabilistic forecasting. Partnership and service co-design with members of the project Industry and User Board (IUB) leveraged the uptake of results across multiple research institutions, academia, industry, and public governance bodies (e.g. civil protection agencies). This article summarises the implementation strategy and the results from ChEESE-1P, outlining also the underpinning concepts and the roadmap for the on-going second project implementation phase (ChEESE-2P; 2023-2026). (c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available