4.6 Article

Surface Selective Oxidation of Sn-Added CMnSi TRIP Steel

Publisher

SPRINGER
DOI: 10.1007/s11661-016-3331-z

Keywords

-

Ask authors/readers for more resources

The influence of the addition of Sn on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. A reference TRIP steel and TRIP steels containing Sn in the range of 0.05 to 1 wt pct were intercritically annealed at 1093 K (820 A degrees C) in an N-2+ 5 pct H-2 gas atmosphere with a dew point of -60 A degrees C. The thin-film oxides formed on the surface of the Sn-added CMnSi TRIP steel were investigated using transmission electron microscopy and 3-dimensional atom probe tomography. The addition of Sn (a parts per thousand yen0.05 wt pct) changed the morphology of the xMnO center dot SiO2 surface oxides from a continuous film morphology to a lens-shaped island morphology. It also suppressed the formation of the Mn-rich oxides of MnO and 2MnO center dot SiO2. The changes in the morphology and chemistry of the surface oxides were clearly related to the surface segregation of Sn, which appeared to result in a decrease of the oxygen permeability at the surface. The formation of lens-shaped oxides improved the wettability of the CMnSi TRIP steel surface by the molten Zn. The improved wetting effect was attributed to an increased area fraction of the surface where the oxide layer was thinner. This enabled a direct, unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer in the initial stages of the hot dipping. The addition of a small amount of Sn was also found to decrease significantly the density of Zn-coating defects on CMnSi TRIP steel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available