4.7 Article

Lactic acid bacteria naturally associated with ready-to-eat rocket salad can survive the human gastrointestinal transit

Journal

FOOD MICROBIOLOGY
Volume 118, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fm.2023.104418

Keywords

-

Ask authors/readers for more resources

This study investigates whether salad-associated LAB can survive the gastrointestinal transit (GIT) and contribute to the gut microbiota. The results suggest that salad-associated LAB can survive in the gastrointestinal tract, but their quantity does not significantly alter the composition of the gut microbiota.
It was theorized that modernization and the decline in harmless microbial populations associated with food have altered the gut microbiota, impacting host metabolism and immunity. Western dietary patterns, characterized by processed foods and preservation methods, may significantly reduce the microbial population associated with food. To mitigate the consequences of bacterial deprivation, the integration of these diets with fermented foods is commonly proposed. Nonetheless, non-fermented food consumed raw may also be an important source of viable microbial cells for the human microbiome. This study investigates whether salad-associated LAB can survive the gastrointestinal transit (GIT) and contribute to the gut microbiota. LAB strains were quantified and isolated from rocket salad (Eruca vesicaria subsp. sativa), and their survival through GIT was assessed via intervention trials in healthy adults and in vitro. Moreover, bacterial communities in fecal samples were analyzed after three days of rocket salad consumption. Washing with a sodium hypochlorite solution drastically reduced total bacterial load and eliminated viable LAB. The quantity of LAB introduced through salads did not significantly alter the gut microbiota composition. Rocket salads harbored Weissella and Leuconostoc species. A significant increase in Weissella spp. but not in Leuconostoc spp. was observed after the consumption of rocket salad. Simulated GIT experiments suggested that the food matrix and the initial number of ingested viable bacteria may have been important in determining survival. These findings propose that plant products could serve as sources of live LAB for the human gut. Further research with diverse vegetables and longer interventions is needed, encouraging studies on raw, non-fermented foods and their impact on the human intestinal microbiome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available