4.2 Article

Larvicidal activity of green synthesized iron oxide nanoparticles using Grevillea robusta Cunn. leaf extract against vector mosquitoes and their characterization

Journal

EXPERIMENTAL PARASITOLOGY
Volume 252, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.exppara.2023.108586

Keywords

Iron nanoparticles; Larvicidal activity; Anopheles stephensi; Aedes aegypti; Biocontrol

Categories

Ask authors/readers for more resources

Extensive fumigation in Pakistan after each monsoon season to control mosquito population has led to significant environmental contamination and elimination of beneficial insects. This study examined the larvicidal efficacy of green synthesized iron nanoparticles (IONPs) using leaf extract against early instar larvae of Ae. aegypti and An. stephensi. The results demonstrated that IONPs at low concentrations can be an eco-friendly and cost-effective method to control the larvae of vector mosquitoes.
Extensive fumigation of synthetic pesticides to control the mosquito vector during each post-monsoon season in Pakistan significantly enhanced the environmental contamination and extinction of beneficial insects from the urban ecosystems. In this context, the present study examined the larvicidal efficacy of green synthesized iron nanoparticles (IONPs), using an aqueous leaf extract of Grevillea robusta against the early 2nd and 4th instar larvae of Aedes aegypti and Anopheles stephensi in Pakistan. The prepared IONPs were characterized by UV-Vis spectrum, FTIR, X-ray diffraction, scanning electron microscopy, and energy-dispersive diffraction. Larvicidal bioassay was conducted at various concentrations (80, 160, 240, 320, and 400 ppm) of IONPs prepared from leaf extract of G. robusta, and readings were taken-every 12 h for two consecutive days. In vitro, larvicidal assay, G. robusta leaf extract IONPs exhibited high mortalities of 64-96% (LC50 = 259.07 ppm; LC90 = 443.92 ppm) for the second instar and 65-98% (LC50 = 238.05 ppm; LC90 = 433.93 ppm) for the fourth instar of Ae. aegypti, while in the case of An. stephensi 56-84% (LC50 = 297.96 ppm; LC90 = 528.69 ppm) for the second and 56-88% (LC50 = 292.72 ppm; LC90 = 514.00 ppm) mortality for fourth larvae at 12-48 h post-exposure times were observed respectively. Significant (p < 0.05) dose-dependent and exposure time-dependent trends were observed among the 2nd and 4th larvalinstar of An. stephensi and Ae. aegypti. However, both species showed similar response and observed no significant (p > 0.05) difference in percentage mortality between the vector mosquitoes An. stephensi and Ae. aegypti. Overall, this study demonstrates that the larvicidal efficacy of green synthesized IONPs at low concentrations can be an ideal eco-friendly and cost-effective biocontrol of vector mosquitoes' larvae of An. stephensi and Ae. aegypti.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available