4.7 Article

Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production

Journal

METABOLIC ENGINEERING
Volume 38, Issue -, Pages 427-435

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2016.10.006

Keywords

Itaconate; 2-hydroxyparaconate; Ustilago maydis; Aspergillus terreus; Metabolic engineering; Secondary metabolites; P450 monooxygenase

Funding

  1. Ministry of Innovation, Science and Research [313/323-400-002 13]
  2. Excellence Initiative of the German federal and state governments to promote science and research at German universities

Ask authors/readers for more resources

The Ustilaginaceae family of smut fungi, especially Ustilago maydis, gained biotechnological interest over the last years, amongst others due to its ability to naturally produce the versatile bio-based building block itaconate. Along with itaconate, U. maydis also produces 2-hydroxyparaconate. The latter was proposed to be derived from itaconate, but the underlying biochemistry and associated genes were thus far unknown. Here, we confirm that 2-hydroxyparaconate is a secondary metabolite of U. maydis and propose an extension of U. maydis' itaconate pathway from itaconate to 2-hydroxyparaconate. This conversion is catalyzed by the P450 monooxygenase Cyp3, encoded by cyp3, a gene, which is adjacent to the itaconate gene cluster of U. maydis. By deletion of cyp3 and simultaneous overexpression of the gene cluster regulator ria1, it was possible to generate an itaconate hyper producer strain, which produced up to 4.5-fold more itaconate in comparison to the wildtype without the by-product 2-hydroxyparaconate. By adjusting culture conditions in controlled pulsed fed-batch fermentations, a product to substrate yield of 67% of the theoretical maximum was achieved. In all, the titer, rate and yield of itaconate produced by U. maydis was considerably increased, thus contributing to the industrial application of this unicellular fungus for the biotechnological production of this valuable biomass derived chemical.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available