4.7 Review

CRISPR/Cas9 advances engineering of microbial cell factories

Journal

METABOLIC ENGINEERING
Volume 34, Issue -, Pages 44-59

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2015.12.003

Keywords

Genome editing; Metabolic engineering; CRISPR/Cas9; Recombineering; Yeast; Bacteria

Funding

  1. Novo Nordisk Foundation
  2. NNF Center for Biosustainability [Synthetic Biology Tools for Yeast] Funding Source: researchfish
  3. Novo Nordisk Fonden [NNF10CC1016517] Funding Source: researchfish

Ask authors/readers for more resources

One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available