4.7 Article

Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate

Journal

METABOLIC ENGINEERING
Volume 34, Issue -, Pages 80-87

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2015.12.004

Keywords

Ethylene glycol; Glycolate; Renewable; Metabolic engineering; Xylose; Hemicellulose

Funding

  1. US Department of Energy [0130-G-PA-291]
  2. National Natural Science Foundation of China [21476014]

Ask authors/readers for more resources

The development of lignocellulose as a sustainable resource for the production of fuels and chemicals will rely on technology capable of converting the raw materials into useful compounds; some such transformations can be achieved by biological processes employing engineered microorganisms. Towards the goal of valorizing the hemicellulose fraction of lignocellulose, we designed and validated a set of pathways that enable efficient utilization of pentoses for the biosynthesis of notable two-carbon products. These pathways were incorporated into Escherichia coli, and engineered strains produced ethylene glycol from various pentoses, including simultaneously from D-xylose and L-arabinose; one strain achieved the greatest reported titer of ethylene glycol, 40 g/L, from D-xylose at a yield of 0.35 g/g. The strategy was then extended to another compound, glycolate. Using D-xylose as the substrate, an engineered strain produced 40 g/L glycolate at a yield of 0.63 g/g, which is the greatest reported yield to date.,0 (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available